Sarthak Consul

 \Box (+91) 9987104320 • \Box sarthakconsul@gmail.com • \Im sconsul.github.io

Education

Indian Institute of Technology Bombay, Mumbai, India

2016 - 2020

Bachelor of Technology (with Honours) in Electrical Engineering and with Minor in Computer Science and Engineering • **Overall CPI:** 9.66/10

Publications

- [1] Compressed Sensing Approach to Group-testing for COVID-19 Detection *IEEE Open Journal of Signal Processing 2021* S. Ghosh, R. Agarwal, M.A. Rehan, S. Pathak, P. Agarwal, Y. Gupta, S. Consul, N. Gupta, R, Goyal, A. Rajwade, M. Gopalkrishnan
- [2] Lower Bounds for Policy Iteration on Multi-action MDPs *IEEE Conference on Decision and Control (IEEE CDC) 2020* K. Ashutosh[†], S. Consul[†], Bhishma Dedhia[†], P. Khirwadkar[†], S. Shah[†] and S. Kalyanakrishnan

Research Internships & Projects

Compressed Sensing Approach to Group-testing for COVID-19 Detection <i>Guide: Prof. Manoj Gopalakrishnan, EE & Prof. Ajit Rajwade, CSE</i>	IIT Bombay Spring 2020
 Devised a single-round pooled testing approach, called Tapestry, to detect SARS-CoV-2 v quantitative RT-PCR that shortens testing time and conserves reagents and testing kits 	viral loads using
 Employed a combination of Combinatorial Orthogonal Matching Pursuit and compressed se along with specially designed Kirkman matrices to recover the status and estimated viral loa 	0 0
• An accompanying Android application (BYOM) has been made for easy implementation at	testing centres
• Approved by the Indian regulator, DCGI, after extensive clinical trials for commercial deploy	/ment.

Lower Bounds for Policy Iteration on Multi-action MDPs IIT Bombay Guide: Prof. Shivaram Kalyanakrishnan, Department of Computer Science & Engineering Spring 2020 $\circ\,$ Devised a family of n-state, k-action MDPs to obtain a strong lower bound of $\Omega(k^{n/2})$ for policy iteration • Generalised existing constructions of 2-action MDPs to k-action MDPs to scale lower bounds by a factor of k for some common deterministic variants of PI, and by log(k) for the corresponding randomised variants Leveraging Reinforcement Learning for Semantic Segmentation IIT Bombay Guide: Prof. Amit Sethi, Department of Electrical Engineering Fall 2019 • Developed an hierarchical segmentation agent trained using the REINFORCE policy gradient algorithm. Achieved 53.62% mIoU on the PASCAL VOC 2012 dataset when sequential labelling Segmentation of Lacunar Objects from Ultra High Resolution μ CT Bone Scans ETH Zürich Guide: Prof. Dr. Ralph Müller, D-HEST, Institute for Biomechanics Summer 2019 • Worked on extracting lacunar structures from trabecular bone samples of rare osteoporotic patients • Worked on a 2 stage method that extracts regions using adaptive thresholding followed by a classifier to fine-tune results by removing noise structures, achieving an F1 score of 98.4% IIT Bombay Semantic Segmentation of Medical Images Guide: Prof. Amit Sethi, Department of Electrical Engineering Summer 2018 • Implemented Global Convolution using PyTorch for the segmentation of lungs from chest x-rays and nuclei segmentation from h/he stained histopathological sections of organs • Improved the state of the art results of nuclei segmentation to a mean F1 score of 85% and set the baseline for the MoNuSeg Challenge at MICCAI 2018 \circ Annotated and pre-processed data from ~ 800 patients afflicted with precancerous/cancerous oral lesions

Scholastic Achievements

- Achieved **Advanced Performer** grade (AP) in **4 courses:** *Biology* (15 out of 445), *Introduction to Electrical Systems* (2 out of 149), *Network Theory* (10 out of 143), and *Electronic Devices Lab* (3 out of 139)
- o Secured All India Rank 840 (out of around 200,000 candidates) in JEE Advanced

• Awarded KVPY Fellowship (AIR 16) by Department of Science and Technology, Govt. of India	[2014]
 Placed in National Top 1% in National Standard Examination in Junior Sciences 	[2012]
• Ranked 4 th in State Science Talent Search Examination (SSTSE), conducted by Govt. of Rajasthar	n [2014]
• Recipient of NTSE Scholarship by National Council of Educational Research and Training	
Miscellaneous Projects	
Digitally Programmable Analog ComputerEE344: ElectronicsProf. Mukul Chandorkar, EE, IIT BombayE	Design Lab Spring 2019
Designed and developed a standalone digitally programmable analog computer, capable of solvin dynamical systems upto the fifth order, demonstrating hardware-in-loop capabilities. The system working in real-time, is fully programmable, and has an on-board power management system [Techn	is capable of
Tree based Stereo Matching for Postcapture RefocusCS663: Digital ImageProf Suyash Awate & Prof. Ajit Rajwade, CSE, IIT BombayCS663: Digital Image	e Processing Fall 2018
• Implemented a hybrid tree based stereo matching algorithm, constructing MSTs to calculate disp	parity
• Incorporated CLMF (Cross Local Multipoint filter) to use as an edge preserving smoothener for depth map, and used the depth estimates to interactively refocus and generate depth blurring	refining the
Multicycled and Pipelined Implementation of IITB-RISC ISAEE309: MicProf. Virendra Singh, EE, IIT BombayEE309: Mic	roprocessors Fall 2018
 Designed and implemented a 6-stage pipelined multicycle RISC processor in VHDL, consisting of logical and branching instructions, and tested it on Altera DE0-Nano FPGA board 	of arithmetic,
• Implemented branch predictors, priority encoders and hazard detection units to safely reduce lat	tencies
Mentorship Experience	
Section Leader for Code In Place 2021	Apr-May 2021
• Prepared and taught a weekly discussion section of 10 students to supplement professors' lecture introductory online Python programming course based on material from the first half of Stanford	d's CS106A.
Department Academic Mentor	2019-2020
• Mentored 12 second year students with a view to guide and help them cope academically	1
Teaching Assistant MA207: Partial Differentia Prof. Swapneel Mahajan, Department of Mathematics, IIT Bombay MA207: Partial Differentia	al Equations Fall 2018
• Taught a class of approximately 60 students. Involved in the setting and evaluation of examination	
	Summer 2018
• Taught the fundamentals of Machine Learning to a class of approximately 130 students	
• Explained the basics of ML and covered the theory and implementation of popular algorithms o and unsupervised learning such as Random Forest Algorithm , SVMs , CNNs , and k-means Clu	
Technical Skills	
Programming Languages- C++, MATLAB, Python, Bash, VHDL, Assembly, JavaScript, MySQML Libraries- PyTorch, TensorFlow, KerasDesign and Simulation Tools- EAGLE, AutoCAD, SolidWorks NgSpice, LATEX, Simulink, LabVIEWHardware- Arduino, Intel 8081, Intel 8085, Altera DE0-Nano	

Relevant Coursework

Advanced Machine Learning, Digital Image Processing, Intelligent & Learning Agents, Automatic Speech Recognition, Computer Vision, Machine Learning, Computer Networks, Data Structures & Algorithms, Operating Systems, Probability & Random Processes, Digital Signal Processing, Convex Optimization, Matrix Computations

Online Courses	• Advanced MATLAB for Scientific Computing (Stanford University - Lagunita)
	• Convolutional Neural Network for Computer Vision (Stanford University - CS231n)
	 Machine Learning (Stanford University - CS229 and Coursera)
	• Neural Networks for Machine Learning (University of Toronto - Coursera)
	• Deep Reinforcement Learning (UC Berkeley - CS285)